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1 Introduction
During the past three decades Lorentz-invariance breaking mechanisms have extensively been dis-
cussed in the literature. This was inspired by the initial work of Kostelecký and Samuel [1, 2] and
the work by Carroll, Field and Jackiw [3]. Whereas in Ref. [1, 2] it was shown that Lorentz invari-
ance could spontaneously be broken in string theories, the approach in Ref. [3] discusses the 1 + 3-
dimensional Maxwell Lagrangian with an additional Chern-Simons term, which explicitly breaks the
Lorentz invariance but gauge invariance remains as a symmetry. These papers have triggered further
investigations of Lorentz and CPT violations in electrodynamics [4, 5] and in the standard model of
particle physics [6–8]. See also the series of meetings [9]. For a summary of theoretical backgrounds
and experimental tests of Lorentz invariance see Ref. [10]. A recent discussion related to quantum
gravity can be found in Ref. [11].

Being a bit more specific, the Lorentz symmetry violation (LSV) effects and their possible exper-
imental observations have, for example, been looked at in [12], where the neutron spin coupling to a
Lorentz- and CPT-violating background field is considered using a magnetometer with overlapping
ensembles of K and 3He atoms. A systematic theoretical investigation to identifying atoms which
show the greatest promise for detecting a Lorentz symmetry violation in the electron-photon sector is
discussed in [13]. A search for Local Lorentz invariance violation associated with operators of mass
dimension d = 6 in the pure-gravity sector with short-range gravitational experiments is, for example,
presented in [14]. Let us also mention that a formalism for analyzing short-range tests of gravity for
general signals of Lorentz violation is presented in [15], and a study on nonminimal Standard-Model-
Extension effects arising from particle and antiparticle charge-to-mass ratio measurements in Penning
traps can be found in Ref. [16].

Particular interest has been and still is in the coupling of charged as well as neutral fermions
in a non-minimal way via the scheme Dµ = ∂µ − qAµ − gbνGµν . Here, bµ is a fixed four-vector
that affects a vector field which causes breaking of the Lorentz symmetry, and Gµν stands either for
the electromagnetic field tensor Fµν or its dual F ⋆

µν = εµνρσF
ρσ. It has been shown that such LSV

interactions may result in an observable difference of the Aharonov–Casher effect between particles
and their anti-particle [17–19]. Implications of such interactions on the scalar Aharonov-Bohm effect
and other geometric phases have also been studied extensively [20, 21]. See also Ref. [22], where the
Aharonov-Bohm-Casher problem is studied in the additional presence of a cosmic string background.

In this work, according to an approach beyond the standard model of particle physics, we study
the influence of the LSV on the relativistic and non-relativistic behavior of a charged Dirac fermion,
which interacts with a uniform magnetic field in cosmic string space-time with the screw dislocation
[23,24]. In this way, we solve the generalized Dirac equation in the presence of a Kratzer-like potential
in the relativistic and non-relativistic limit. In both cases, the Kratzer-like potential stems from a
common LSV scenario in the presence of the cosmic screw dislocation in the background space-time.
Meanwhile, this LSV scenario is created by a fixed space-like vector field in the radial direction.

This paper is organized as follows. In the next section, we set up the stage starting with a line el-
ement which corresponds to a background space-time provided by a cosmic screw dislocation. Then,
in order to investigate the interaction of a relativistic charged Dirac fermion with a uniform magnetic
field under the background involving a Kratzer-like potential induced by the possible scenario of the
LSV effect, we incorporate a relevant coupling into the generalized Dirac equation, which includes
an electromagnetic four-vector term potential and a term associated with breaking the Lorentz sym-
metry. In this way, after assigning a uniform magnetic field in the direction of the screw dislocation
and a fixed space-like vector field in radial direction perpendicular to the magnetic field direction,
we find a solvable form of the relativistic limit of the generalized Dirac equation. We then utilise
the Nikiforov–Uvarov (NU) method [25] to obtain exact analytical solutions. In Sect. 3, we study
the non-relativistic behavior of the charged Dirac fermions in the background having a Kratzer-like
potential generated by the possible scenario of the LSV effect in the presence of the cosmic screw dis-
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location in space-time. We obtain the Schrödinger-Pauli equation and find exact analytical solutions
similar to the relativistic case. We conclude in Sect. 4 with a short summary and some additional
remarks.

2 Relativistic limit of the generalized Dirac equation under the
LSV effect

In this section, we first construct the Dirac equation in the relativistic regime with a background
space-time defined by a cosmic screw dislocation and then provide exact analytical solutions. In this
way, we observe that the corresponding charged Dirac fermion is affected by a Kratzer-like potential
induced by a possible scenario of the LSV effect. Accordingly, we need to embed a relevant coupling
containing an electromagnetic four-vector term potential and a term associated with breaking the
Lorentz symmetry in the generalized Dirac equation.

To begin with, let us describe the space-time containing curvature and torsion via the following
line element corresponding to the cosmic screw dislocation background in the 1 + 3-dimensional
cylindrical coordinate [26–38]

ds2 = −dt2 + dr2 + α2r2dφ2 + (dz + χdφ)2 . (2.1)

Here t stands for the time coordinate, t ∈ R+ and (r, φ, z) are the usual cylinder coordinates in R3

taking values in the ranges r ∈ R+, φ ∈ [0, 2π] and z ∈ R. Moreover, we will work in units where
ℏ = 1 and c = 1.

In the above we have also introduced two parameters, α and χ, characterizing the curvature and
torsion of the space-time. The first parameter α, which is smaller than unity, is expressed as α =
1 − 4ϖG, with ϖ being the linear mass density related to the cosmic string and G is Newton’s
gravitational constant [39].

The second parameter χ in essence represents the modulus of Burgers vector b⃗ = be⃗z, which is
taken in the z-direction so that χ = b/2π. In the context of linear topological defects, the Burgers
vector characterizes a line defect. More precisely, it is a screw dislocation as by a full rotation about
the z-axis it results in a translation in the z-direction by b⃗. In principle b is an arbitrary real number.
For a graphical presentation of the space characterised by α and χ we refer to the figures in Ref. [37].

With the line element (2.1), we can associate a contravariant metric tensors gµν which explicitly
reads

gµν =


−1 0 0 0
0 1 0 0
0 0 1

α2r2
− χ

α2r2

0 0 − χ
α2r2

1 + χ2

α2r2

 . (2.2)

Having setup the space-time structure, we will now derive within this framework the Dirac equa-
tion for charged spin one-half fermions minimally coupled to an electromagnetic four-vector potential
and non-minimally to the electromagnetic four-tensor breaking the Lorentz symmetry by the follow-
ing scheme

iγµ∇µ → iγµ∇µ − qγµAµ − gbµFµνγ
ν . (2.3)

Hence, the generalized Dirac equation for a charged fermion with mass m in this configuration reads

[iγµ∇µ − qγµAµ − gbµFµνγ
ν −m] Ψ (t, r⃗) = 0. (2.4)

Here, the parameter q denotes the electric charge of the fermions and Aµ represents the electromag-
netic four-vector potential such that Aµ = (A0, A⃗). The third term of the left-hand side of Eq. (2.4)
represents the LSV effect in the geometric approach, where bµ is considered as a fixed four-vector
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coupled to the electromagnetic field tensor Fµν(x) via the coupling constant g [40–42]. We recall that
the electric and magnetic field components are given in the usual way as F0i = −Fi0 = −Ei and
Fij = ϵijkB

k, with i, j = 1, 2, 3. It is worth mentioning that multiplying the spatial part of the fixed
four-vector bµ, which is responsible for the Lorentz symmetry breaking, by the coupling constant g
induces a type of electric dipole moment d⃗ = gb⃗ (analogous to a permanent electric dipole moment)
such that it is fixed by the background [18, 20, 22]. Besides, the generalized Dirac matrices are given
by γµ = eµa(x)γ

a, where the objects eµa(x) are the so-called inverse of the tetrads, and γa denotes
the standard Dirac matrices corresponding to a flat space-time by given [43]1

γ0 = β̂ =

(
1 0
0 −1

)
, γi = β̂α̂i =

(
0 σi

−σi 0

)
, Σi =

(
σi 0
0 σi

)
. (2.5)

The spin vector and the Pauli matrices are denoted by Σ⃗ and σi, respectively. Moreover, the Pauli
matrices obey the well-known anti-commutation relations {σi, σj} = 2δijI, where δij denotes the
Kronecker delta and I denotes the 2× 2 identity matrix, which may also be written as σ0 = I.

Having this in mind the components of the generalized Dirac matrices are found to be given by

γt = γ0 , γr = γ1 , γφ = (1/αr)γ2 , γz = −(χ/αr)γ2 + γ3 . (2.6)

In a next step we need to construct the covariant derivatives ∇µ being expressed in the form ∇µ =
∂µ + Γµ, where Γµ represents the spinorial connections. The components of these connections are
found via the relation Γµ = i

4
ωµabΣ

ab, where Σab is given by Σab = i
2

[
γa, γb

]
.

However, before discussing the spin connection ωµab mentioned in above relation, we need to
address the necessity of using the spinor theory in defected space-time background. It is not surprising
that spinors need to be represented locally by using the transformation laws under the background of
the defected space-time. These transformation laws are raised from local Lorentz transformations
[44]. Now we set up a local reference frame by a non-coordinate basis in the form θ̂a = eaµ(x)dx

µ.
Here the tetrads eaµ(x) are in essence defined via their inverse obeying the relation dxµ = eµa(x)θ̂

a.
Note that dxµ are the so-called coordinate basis of 1-forms.

Thus, according to this formalism and the line element (2.1), we can set the non-coordinate basis
related to the local reference frame as θ̂0 = dt; θ̂1 = dr; θ̂2 = αr dφ; θ̂3 = dz + χ dφ. Furthermore,
the tetrads and their inverse must satisfy the conditions eaµ(x) e

µ
b(x) = δab and eµa(x) e

a
ν(x) = δµν .2

Moreover, the tetrads and metric tensors satisfy the relation gµν(x) = eaν(x)e
b
ν(x)ηab, where the

Minkowski tensor ηab is given by ηab = diag(−+++).
As a result the non-vanishing components of the inverse tetrad eµa(x) are given by et0(x) =

er1(x) = ez3(x) = 1, eφ2(x) = 1/αr and ez2(x) = −χ/αr. In order to calculate the non-
vanishing components of the spinorial connection Γµ, we first need to find the components of the
spin connection. These can be obtained by solving the Maurer-Cartan structure equations in the form
dθ̂a+ωa

b∧ θ̂b = 0 written in the absence of the torsion, with ωa
b = ω a

µ b(x)dx
µ. Thereby, the non-null

components of the spin connection are found as ω 2
φ 1(x) = −ω 1

φ 2(x) = α. Thus, the only non-null
component of the spinorial connection is

Γφ = − iα

2
Σ3. (2.7)

In this way, in order to find the analytical solutions of Eq. (2.4), we first need to find closed-form
expressions for the generalized Dirac matrices γµ and the associated spinorial connections Γµ. Thus,
we get iγµΓµ = iγ1/2r. Then, we need to expand the third term of the left-hand side of equation
(2.4), which corresponds to the LSV background, as follows

−gbµFµν(x)γ
ν ≡ −γtg b⃗ · E⃗ + γ⃗ ·

(
g b0E⃗ + g

(
b⃗× B⃗

))
, (2.8)

1We use Latin indices for representing the local reference frame, i.e., a, b = 0, 1, 2, 3 and the spatial components of
the local reference frame, i.e., i, j = 1, 2, 3.

2Here Greek indices are considered as µ, ν = t, ρ, φ, z.
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in which γ⃗ is given by γ⃗ = (γr, γφ, γz), also b0 and b⃗ = (b1, b2, b3) are defined as time-like and
fixed space-like vectors, respectively. Besides, the vector fields E⃗ and B⃗ are introduced as electric
and magnetic fields in the local reference frame of observers. At this point, by focusing on the second
and third terms of the left-hand side of Eq. (2.4), we can define the effective vector potential as
A⃗eff = A⃗ − g

q
[b0E⃗ + (b⃗ × B⃗)] (note that in Eq. (2.8) we can see the expanded form of the term

corresponding to the LSV effect). Hence, an effective magnetic field in this context can be written
as B⃗eff = ∇⃗ × A⃗eff . Meanwhile, the first term of the right-hand side of Eq. (2.8) gives rise to a
geometric phase corresponding to an effect analogous to the scalar Aharonov–Bohm effect under the
background of the LSV effect investigated by Bakke et al [20]. Then, to investigate a new scenario
involving the interaction of an electric dipole moment induced by the LSV effect with a magnetic
field, we propose a fixed space-like vector in the direction of the r coordinate and a uniform magnetic
field in the direction of the screw dislocation in the following form [45, 46]

b⃗ = b1r̂, B⃗ = B0ẑ, (2.9)

where the parameters b1 and B0 are constant. Thus, based on the uniform magnetic field given by Eq.
(2.9), we can consider an electromagnetic three-vector potential in the background as

A⃗ =
B0

2
r φ̂. (2.10)

With all these ingredients, we can write down the generalized Dirac equation in an explicit form in
the presence of the LSV effect in the corresponding background space-time as follows[

i∂t + iα̂1

(
∂r +

1

2r

)
+ i

α̂2

αr

(
∂φ − χ∂z + i

qB0

2
r + igb1B0

)
+iα̂3∂z − β̂m

]
Ψ(t, r⃗) = 0.

(2.11)

It is evident that Eq. (2.11) is established by considering Eq. (2.8) in terms of the fields given by
Eq. (2.9). In addition, the effects associated with the generalized Dirac matrices (2.6), the non-null
component of the spinorial connection (2.7) and the vector potential (2.10) can be well seen in the
second and third terms of Eq. (2.11). Furthermore, the impact of the fixed four-vector becomes
obvious through the appearance of the coupling constant g in the third term of Eq. (2.11).

In the following, to represent the generalized Dirac equation (2.11) in the form of two coupled
equations, we express the Fermi field Ψ(t, r⃗) in terms of two 2-spinors ψ1 (t, r⃗) and ψ2 (t, r⃗) as fol-
lows, Ψ(t, r⃗) = (ψ1 (t, r⃗) , ψ2 (t, r⃗))

T. Here the spinors ψ1 and ψ2 are considered as two-component
spinors which may be taken as pair-wise eigenstates of the third Pauli matrix, that is, σ3ψ±

1 = ±ψ±
1

and σ3ψ±
2 = ±ψ±

2 . Therefore, by replacing the new form of the Fermi field in the generalized Dirac
equation (2.11), we arrive at

(i∂t −m)ψ1 (t, r⃗) =

[
−iσ1

(
∂r +

1

2r

)
− i

σ2

αr

(
∂φ − χ∂z + i

qB0

2
r + igb1B0

)
−iσ3∂z

]
ψ2 (t, r⃗) , (2.12a)

(i∂t +m)ψ2 (t, r⃗) =

[
−iσ1

(
∂r +

1

2r

)
− i

σ2

αr

(
∂φ − χ∂z + i

qB0

2
r + igb1B0

)
−iσ3∂z

]
ψ1 (t, r⃗) . (2.12b)

In order to solve these two coupled equations, we combine them by removing the spinor ψ2 in the
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first equation via the second equation in (2.12). This leads us to 3

(
∂2t +m2

)
ψ1 =

[
∂2r +

1

r
∂r +

1

α2r2
(∂φ − χ∂z)

2 + ∂2z

]
ψ1

− 1

4r2
ψ1 +

2i

α2r2

(
qB0

2
r + gb1B0

)
(∂φ − χ∂z)ψ1

− 1

α2r2

(
qB0

2
r + gb1B0

)2

ψ1 −
iσ3

αr2
(∂φ − χ∂z)ψ1

+
σ3

αr2

(
qB0

2
r + gb1B0

)
ψ1 −

qB0σ
3

2αr
ψ1.

(2.13)

Obviously spinor ψ1 may be chosen as an eigenstate of σ3 corresponding to the two eigenvalues ±1.
Hence, we set σ3ψs

1 = sψ1 with s = ±1. Furthermore, the Hamilton operator Ĥ , in essence given
by right-hand side of Eq. (2.13), is invariant under translations along the z-axis as well as under
rotations about the same axis. That is, it commutes with the linear momentum operator p̂z = −i∂z
and the angular momentum operator Ĵz = L̂z + Ŝz = −i∂φ + s

2
, [Ĥ, p̂z] = 0 = [Ĥ, Ĵz]. As a result

we may choose the following ansatz

ψs
1 (t, r⃗) = e−iEt+i(ℓ+ 1

2
)φ+ikzΦs(r), (2.14)

where E denotes the energy eigenvalue of the underlying Dirac Hamiltonian as the system is invariant
under translations in time. Furthermore, the wave number k ∈ R and angular momentum quantum
number ℓ ∈ Z denote the eigenvalues of operators p̂z and L̂z, respectively. Now, if we substitute
ψs
1 (t, r⃗) given in Eq. (2.14) into Eq. (2.13), we arrive at the second-order differential equation in

terms of a new wave function Φs(r) as follows

d2Φs(r)

dr2
+

1

r

dΦs(r)

dr
+

1

r2

[
−
(
k2 +m2 +

q2B2
0

4α2
− E2

)
r2

−qB0 ξℓ
α2

r −
(
ξ2ℓ
α2

− s ξℓ
α

+
1

4

)]
Φs(r) = 0,

(2.15)

where ξℓ is defined as

ξℓ = ℓ+
1

2
− χk + gb1B0. (2.16)

In the literature, Eq. (2.15) is recognized as the NU equation [25]. Now, when focusing on Eq. (2.15),
we see that the following expression, representing the LSV scenario generated by the fixed space-like
vector in Eq. (2.9), takes the form of a Kratzer potential.

V(r) = −gb
1qB2

0

α2r
−

[
(gb1B0)

2

α2
− gb1B0

α

(
s−

2
(
ℓ+ 1

2
− χk

)
α

)]
1

r2
. (2.17)

In this Kratzer-like potential the influence of the LSV scenario and screw dislocation becomes trans-
parent. It should be noted that the Kratzer potential (as a static scalar potential) has many applications
in various fields of physics, such as quantum field theory, particle physics, molecular and solid-state
physics [47–49]. For instance, in the context of molecular physics, the Kratzer potential has been
considered to describe interactions in a molecular system; for instance, the interactions of a non-
relativistic quantum particle with the Kratzer molecular potential in space-time background [50]. Be-
sides, this potential has been considered in the investigation of anharmonic oscillatory systems [51].

3Because of the compactness of the following equation, we temporarily drop the t and r⃗ dependencies in the spinor
component ψ1 (t, r⃗).
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The Kratzer potential is amongst the most attractive physical potentials as it contains a degeneracy-
removing inverse square term besides the common Coulomb term.

The Kratzer potential is a central potential involving a Coulomb-like term and an inverse-square.
In order to be an attractive potential, it is sufficient that the Coulomb-like part is an attractive potential.
According to Eq. (2.17), the term related to the Coulomb potential can remain an attractive potential
by considering the positive values of qB0 ξℓ. To maintain the positivity of qB0 ξℓ, assuming our
Dirac fermion being an electron with q = −|q| and b1 being always a positive constant [45], we
need to adopt a negative value for B0 ξℓ. Another constituting term of the Kratzer-like potential
(induced by the possible scenario of the LSV effect in the presence of the cosmic screw dislocation
in the background space-time) is the inverse square potential used in many problems such as the
investigation of the Efimov effect [52, 53], conformal invariance [54], as a singular potentials [55] in
the presence of the hyperspherical approximation [56] as well as inducing the inverse square potential
under the Aharonov–Casher effect [57]. To analyze the quantum dynamics of charged Dirac fermions
in the background space-time described by the cosmic screw dislocation under the influence of the
LSV effect in the relativistic regime, we need to find exact analytical solutions of the second-order
differential equation (2.15). For this purpose, according to the form of Eq. (2.15), we can apply the
NU method [25], which results in explicit expressions for wave functions and corresponding energy
eigenvalues of the Schrödinger and Schrödinger-like equations. Based on this method, the solutions
for Eq. (2.15), which in essence can be reduced to a confluent hypergeometric equation, may be
written as follows (see Ref. [58] for more details of the NU method)

ΦR
snℓ(r) =NR

nℓ r
1
2

√
1+

4ξ2
ℓ

α2 − 4sξℓ
α e

−
√

k2+m2+
q2B2

0
4α2 −(ER

nℓ)
2

r

× L

√
1+

4ξ2
ℓ

α2 − 4sξℓ
α

n

(
2

√
k2 +m2 +

q2B2
0

4α2
− (ER

nℓ)
2
r

)
.

(2.18)

Here NR
nℓ and L(α)

n (x) denote the normalization constant and the generalized Laguerre polynomial,
respectively. We added a superscript R in order to indicate that this result stands for the relativistic
limit discussed in this section.

In addition, following the NU method, we also obtain the relativistic energy eigenvalues corre-
sponding to Eq. (2.15)

(
ER
snℓ

)2
= k2 +m2 +

q2B2
0

4α2
− q2B2

0ξ
2
ℓ

α4

(
1 + 2n+

√
1 +

4ξ2ℓ
α2 − 4sξℓ

α

)2 . (2.19)

The relativistic energy eigenvalues corresponding to a charged Dirac fermion in space-time with the
cosmic screw dislocation under the background involving a Kratzer-like potential induced by the LSV

scenario generated by the fixed space-like vector in Eq. (2.9) then read ER
snℓ = ±

√
(ER

snℓ)
2 . In this

regard, one can see the interaction between the uniform magnetic field and a relativistic charged Dirac
fermion with an induced analogous electric dipole moment. Note that this interaction is implicitly
given by the parameter ξℓ as defined in Eq. (2.16). Furthermore, it is observed that Eq. (2.19)
depends on other parameters such as the quantum numbers n and ℓ, the parameter α associated with
the deficit angle, the rest massm related to the fermionic field, the wave number k and the eigenvalues
s of σ3.

In the next section, based on our geometric approach, we want to discuss the non-relativistic
quantum dynamics of charged Dirac fermions under the influence of the Kratzer-like potential given
by the LSV scenario determined by the fixed space-like vector in Eq. (2.9).
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3 Non-relativistic limit of the generalized Dirac equation under
the LSV effect

To investigate the non-relativistic behavior of charged Dirac fermions in the background space-time
described by the cosmic screw dislocation in the presence of the Kratzer-like potential under the LSV
scenario, we must first obtain the non-relativistic limit of the generalized Dirac equation. Following
the standard procedure, we take out a phase factor exp{−imt} and introduce the large and small
components of the Dirac spinor as follows

Ψ(t, r⃗) = e−imt

(
ψ1 (t, r⃗)
ψ2 (t, r⃗)

)
. (3.1)

Inserting this into (2.11) we arrive at the pair of coupled equation for the two 2-spinors as

i∂tψ1 (t, r⃗) =

[
−iσ1

(
∂r +

1

2r

)
− i

σ2

αr

(
∂φ − χ∂z + i

qB0

2
r + igb1B0

)
−iσ3∂z

]
ψ2 (t, r⃗) , (3.2a)

i∂tψ2 (t, r⃗) + 2mψ2 (t, r⃗) =

[
−iσ1

(
∂r +

1

2r

)
− i

σ2

αr

(
∂φ − χ∂z + i

qB0

2
r + igb1B0

)
−iσ3∂z

]
ψ1 (t, r⃗) . (3.2b)

Here the spinor ψ1 (t, r⃗) is considered as the large component and the spinor ψ2 (t, r⃗) is the small
component. In the non-relativistic limit one usually assumes for the small component the relation
|2mψ2(t, r⃗)| ≫ |i∂tψ2(t, r⃗)|. Hence, ignoring the time derivative on the left-hand side of the second
equation above and substituting that approximate equation into the first one, finally results in the
generalized Schrödinger-Pauli equation as4

i∂tψ1 =− 1

2m

[
∂2r +

1

r
∂r +

1

α2r2
(∂φ − χ∂z)

2 + ∂2z

]
ψ1

+
1

8mr2
ψ1 −

i

mα2r2

(
qB0

2
r + gb1B0

)
(∂φ − χ∂z)ψ1

+
1

2mα2r2

(
qB0

2
r + gb1B0

)2

ψ1 +
iσ3

2mαr2
(∂φ − χ∂z)ψ1

− σ3

2mαr2

(
qB0

2
r + gb1B0

)
ψ1 +

qB0σ
3

4mαr
ψ1.

(3.3)

The reader may realize that the operator on the right-hand-side of (3.3) is up to an additional factor
−1/2m identical to the one given in (2.13). Hence, we may simply repeat the same approach using
the same ansatz (2.14) and arrive at the following radial wave equation

d2Φs(r)

dr2
+

1

r

dΦs(r)

dr
+

1

r2

[
−
(
k2 − 2mE +

q2B2
0

4α2

)
r2

−qB0 ξℓ
α2

r −
(
ξ2ℓ
α2

− s ξℓ
α

+
1

4

)]
Φs(r) = 0.

(3.4)

Obviously, Eq. (3.4) is identical in form with Eq. (2.15) when replacing E2 −m2 by 2mE . Thus, the
solution of the wave equation (3.4) can be determined based on the generalized Laguerre polynomial

4Again we temporarily drop the t and r⃗ dependencies in the spinor component ψ1 (t, r⃗).
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as follows

ΦNR
snℓ(r) =NNR

nℓ r
− 1

2

√
1+

4ξ2
ℓ

α2 − 4sξℓ
α e

−
√

k2−2mENR
nℓ +

q2B2
0

4α2 r

× L

√
1+

4ξ2
ℓ

α2 − 4sξℓ
α

n

(
2

√
k2 − 2mENR

nℓ +
q2B2

0

4α2
r

)
,

(3.5)

where the superscript NR stands for the non-relativistic limit. Similarly, we can determine the non-
relativistic energy eigenvalues corresponding to Eq. (3.4) as

ENR
snℓ =

k2

2m
+
q2B2

0

8mα2
− B2

0q
2ξ2ℓ

2mα4

(
1 + 2n+

√
1 +

4ξ2ℓ
α2 − 4sξℓ

α

)2 . (3.6)

Now, in order to investigate the non-relativistic limit of the energy eigenvalues in Eq. (2.19), we
assume that ER ≈ m + ENR in the non-relativistic regime. In this way, if we take ER − m ≈ ENR

and ER + m ≈ 2m, we arrive at (ER)2 − m2 ≈ 2m ENR. Accordingly, considering Eq. (2.19) and
(3.6), we can clearly see that the energy eigenvalues given in Eq. (3.6) are the non-relativistic limit of
the energy eigenvalues in Eq. (2.19). We will further comment on this observation in the next section
where we show that in fact (ER)2 −m2 = 2m ENR.

4 Conclusions and Comments
In this study we started with the description of the space-time containing curvature and torsion through
the line element corresponding to the cosmic screw dislocation background and continued by provid-
ing a brief review of the mathematical relations corresponding to the spinor theory for such a geomet-
ric approach. Then, based on the interface between quantum mechanics and quantum field theory in
the relativistic and non-relativistic regime, quantum dynamics of a charged Dirac fermion is studied
under the background of the LSV effect described as a background having a privileged direction in
space-time. Thus, the influence of the LSV scenario, which originates from a fixed space-like vector
field in the direction of the coordinate r, generates a Kratzer-like potential in the background space-
time described by the cosmic screw dislocation. In this regard, the interaction of a charged Dirac
fermion, which has an induced electric dipole moment defined by the fixed space-like vector in the
radial direction, with a uniform magnetic field in the direction of screw dislocation is investigated by
using the relativistic and non-relativistic limit of the generalized Dirac equation in the presence of the
Kratzer-like potential.

Furthermore, for both limits, the exact analytical solutions are obtained by solving the generalized
Dirac equation and its non-relativistic limit, that is, the generalized Schrödinger-Pauli equation by the
NU method in this background. In both cases the wave functions are represented in terms of the
generalized Laguerre polynomials and the corresponding energy eigenvalues are obtained in terms of
the parameters such as the electric charge q, the constant B0 associated with the uniform magnetic
field, the analogous electric dipole moment d = gb1, the quantum numbers n and ℓ, the parameter α
associated with the deficit angle, the rest mass m related to the fermionic field, the wave number k
and the eigenvalues s of σ3.

Obviously the discussion of the relativistic and non-relativistic case are very similar. In order to
understand that in more detail let us put the Dirac eq. (2.11) in the form

i∂tΨ = ĤDΨ , (4.1)

where the Dirac Hamiltonian can be represented by a 2× 2 matrix of the form

ĤD =

(
m Q
Q −m

)
(4.2)
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with

Q := −iσ1

(
∂r +

1

2r

)
− i

σ2

αr

(
∂φ − χ∂z + i

qB0

2
r + igb1B0

)
− iσ3∂z = Q† (4.3)

being a self-adjoint operator acting on L2(R3)⊗C2. For such Dirac Hamiltonians it is known, see Ref.
[59] and references therein, that a unitary operator Û exists, i.e. a Foldy Wouthuysen transformation,
which brings it into a block diagonal form

ĤFW = ÛĤDÛ
−1 =

( √
Q2 +m2 0

0 −
√
Q2 +m2

)
= β ⊗

√
Q2 +m2

The Pauli Hamiltonian as defined in (3.3) reads in these terms

ĤP =
1

2m
Q2

Hence, we have

ĤFW = β ⊗m

√
1 + 2ĤP/m , (4.4)

which shows that the Pauli Hamiltonian is indeed the non-relativistic limit of the Dirac Hamilto-
nian. Obviously the eigenvalues ER of the Dirac Hamiltonian and the eigenvalues ENR of the Pauli
Hamiltonian are related by

ER = ±m
√

1 +
2ENR

m

which for large m and taking the upper sign results in ER ≃ m + ENR. It is also obvious that the
eigenstates of the ĤD are closely related to those of ĤP via Û . Finally, let us note that the Dirac
Hamiltonian (4.2) exhibits a quantum mechanical SUSY structure according to the general approach
of Ref. [59] with Q in essence representing the associated SUSY charge.
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Lett. B, 639 (2006) 675.

[19] H. Belich, L. P. Colatto, T. Costa-Soares, J. A. Helayël-Neto and M. T. D. Orlando, Eur. Phys.
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